It had been owned by one of my fellow contest club members, K4GA. I didn't know Archie that well, aside from the e-mails we exchanged on the club reflector. After he passed away, his widow wanted his radio equipment to find a good home. I made an offer on the amplifier, and it was mine.
K4BAI later told me that this Amplifier had a bad trip to Barbados once -- it had been damaged in shipping, but had been repaired by insurance. When I got it, it needed a little TLC. The cover was on backwards, and several of the cover screws were missing. The meter switch had been replaced with one that had a shaft about an inch too long.
I fixed the meter switch with a few minutes work with a hacksaw. I bought all new screws and put the cover on the right way. The meter reading for the high-voltage was a bit low -- this turned out to be a problem with one of the divider resistors. I had much higher-quality replacements in my junk box. That fixed, the meter for high voltage read exactly as it should. The open-frame antenna relay would sometimes leave the receiver antenna disconnected. This was easily taken care of with a little contact cleaner.
This amplifier has given good service in the last four years. I've used it pretty heavily in RTTY contests, running about 400-500 watts out. I've had only a couple of complaints.
One was the jarring THUMP that would sound when I switched the power on. It didn't happen every time, but often. All that inrush current couldn't be good for the power supply components. It didn't take long to figure out I needed a step-start circuit.
Step-start is simple. Low-value resistors are placed on the main power leads. They limit the inrush current when the unit is switched on. Once the capacitors charge to a certain point, the resistors are shorted out by a relay. For the AL-80A, this is easily accomplished with two 10-ohm 10-watt resistors. Selecting the relay was a little trickier. I found a nice 12 volt relay, an Omron G2RL-24. This is a DPDT relay with contacts that can carry 8A at 250 volts. This sealed relay was only about $3.00 from Mouser Electronics.
I designed a simple circuit board for this project. It was also my first experience with TEC-200 film. The first
version of the board didn't come out too well, as I tried to flood-fill to leave as much copper in place as possible. The result was pretty ugly, because all that toner didn't stick well to the board. I probably didn't have the heat setting right. I redesigned the board without the flood-fill, and I also beefed up the size of all the traces. Getting the TEC-200 film to transfer the toner with just an iron is going to take more practice, but I'm pleased with the results.
Note from the design -- I layed out this board in 2007, but I didn't get a chance to build it until recently. I will admit that I drilled some of the component holes a little large. I'll have to remember to use the smallest of my numbered drill bits next time I make a circuit board.
The one nice thing about designing your own board -- it's guaranteed to fit your parts. There's only five components on this board, and it goes together with a few minutes of soldering.
Getting the board in the AL-80A took more doing. For one thing, it is heavy. Moving it around is not easy, and must be done with great care to avoid damage to the amplifier and also to myself.
The next problem was getting in to wire the board up. The power connections are on a barrier strip that's close to the power transformer. Fortunately, one can remove the screws and unsolder a few connections and the back panel lays down flat.
Figuring out how to connect the board was tricky. Like I said, this AL-80A had a bad trip to Barbados. The original transformer had been replaced with an AL-80BX transformer -- which also has buck/boost windings.
I ended up hooking the board from the connections from the fuses to the barrier strip. 12 volt power from the auxiliary jack drives the relay.
While I had the amplifier open on the workbench, I also added a glitch resistor to the B- lead from the rectifier stack. This is a 10-ohm 20-watt resistor. If the tube were to become gassy and short out, the glitch resistor will help dissipate the energy stored in the capacitor bank. I borrowed a couple of unused lands on the rectifier board in order to mount the glitch resistor.
Buttoning it all back up, then came the smoke test. Fortunately, I kept the smoke in. Step-start works great. No more loud thump.
No comments:
Post a Comment